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sin 0 
hkl (A = 1.54 A.) F I ~ .  

520 0.403 2.5 
530 0.494 1.5 
540 0.599 < 2.0 
550 0.711 3"0 
560 0.826 < 2.0 
570 0.945 < 1.5 
610 0.397 15.0 
620 0.454 16.0 
630 0.536 2.5 
640 0.634 7.5 
650 0.740 7.5 
660 0.851 6.0 
670 0.968 1.0 
710 0.456 15.0 
720 0.507 7.0 
730 0.581 3.0 
740 0.672 14.0 
750 0.774 6"5 

"760 0.881 7"5 

~calc. 
+ 2.5 
+ 5-0 
- -  2.5 
- -  6 . 0  

- -  1 . 5  

- -  1 . 0  

+14.0 
+ 16.0 
+ 1-0 
- -  7.5 
+ 4.0 
- -  4.5 
- -  1 . 0  

- -  9 " 0  

- -  7.0 
+ 5.0 
+ 5.0 
+ 3.0 
+ 4.0 

T a b l e  4 (cont.) 

sin 0 
hkl (h = 1.54 A.) Fm&a~" Fe~c" 

770 0"994 < 1"0 -- 1"0 
810 0"516 6"0 -- 6"5 
820 0"561 3"0 -- 3"0 
830 0"629 11"0 + 10"0 
840 0"714 10"0 + 10"0 
850 0.810 2.0 + 0.5 
860 0.914 < 1.5 + 0.5 
910 0.575 4.0 -- 4.0 
920 0.616 3.0 + 3"0 
930 0.679 3"0 + 4.0 
940 0.759 2.0 + 2.5 
950 0-850 2.0 -- 2.0 
960 0.948 < 1.5 -- 2.0 

10,1,0 0.637 2.5 + 1.5 
10,2,0 0.674 6.0 + 5"5 
10,3,0 0.731 < 2.0 -- 1.0 
10,4,0 0.805 < 2.0 -- 2.0 
10,5,0 0.893 1.5 + 1.5 
10,6,0 0.987 < 1.0 -- 1.0 

sin 0 
hkl (3.---- 1.54 A.) Fmea~" 

11,1,0 0"698 2'0 
11,2,0 0"733 4"0 
11,3,0 0"786 < 2"0 
11,4,0 0"856 2"0 
11,5,0 0"937 < 1'5 
12,1,0 0"759 2"5 
12,2,0 0"790 < 2"0 
12,3,0 0"840 2"5 
12,4,0 0"956 1"5 
12,5,0 0"983 < 1"0 
13,1,0 0"821 <2"0 
13,2,0 0"850 4"0 
13,3,0 0"897 1"5 
13,4,0 0"958 < 1"0 
14,1,0 0"884 4"5 
14,2,0 0"909 3"0 
14,3,0 0"953 < 1"0 
15,1,0 0"943 < 1"5 
15,2,0 0"969 1"5 

-F¢~lc, 
- -  2.5 
+ 4.0 
+ 1.5 
+ 2.0 
+ 0.5 
+ 2.5 

0 
+ 2.5 
- -  0.5 

0 
0 

+ 1.5 
- -  1.0 
- -  1.0 
+ 3.5 
- -  2.0 
+ 0"5 
+ 2.0 
+ 2.0 
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The  implication is a t r a n s f o r m a t i o n  of  a H a r k e r  syn thes i s  t h a t  has  t he  p r o p e r t y  of  i nd ica t ing  t h e  
possible posi t ions  of  a t o m s  in  t he  c rys ta l  s t ruc tu re .  The  loca t ion  of  t h e  a t o m s  is sub j ec t  to  a ce r t a in  
a m b i g u i t y  w h i c h  can  be def ined b y  an  a m b i g u i t y  factor ,  m=M/q.  M is a basic  a m b i g u i t y  
cha rac te r i s t i c  of  t h e  s y m m e t r y  axis a n d  ar is ing f rom group  p roduc t s ,  whi le  q is a d e g e n e r a c y  fac tor  
express ing  a pa r t i cu l a r  k i n d  of  equ iva lence  of  these  p roduc t s .  The  a m b i g u i t y  fac to r  can  also be 
d e t e r m i n e d  m o r e  eas i ly  w i t h  t h e  a id  of  miss ing  spec t ra .  I t  is s h o w n  t h a t  M is t h e  m o d u l u s  of  t h e  
t r a n s f o r m a t i o n  f rom t h e  impl i ca t ion  cell to  t he  c rys ta l  cell, a n d  1/q is t h e  f r ac t ion  of  spec t r a  
presen t .  T h e  a m b i g u i t y  fac tor  o f  a n y  imp l i ca t i on  syn thes i s  can,  therefore ,  be  eas i ly  d e t e r m i n e d  f rom 
the  s y m m e t r y  a n d  cha rac te r i s t i c  miss ing  spec t r a  of  t h e  space group .  

The  a m b i g u i t y  of  an  impl i ca t ion  can  be reso lved  w i t h  t h e  a id  of  m P a t t e r s o n  l ine syn theses .  
The  impl i ca t ion  synthes is ,  therefore ,  p rov ides  a theore t i ca l  dev ice  for u n t a n g l i n g  t h e  P a t t e r s o n  
synthes is .  This  suggests  t h a t  t he re  shou ld  exis t  a s imple  r e l a t ion  b e t w e e n  t h e  Fou r i e r  coefficients 
in t he  impl i ca t ion  func t ion  a n d  the  co r r e spond ing  coefficients in t he  Fou r i e r  express ion  of  t h e  pro- 
j e c t ed  e lec t ron  dens i ty .  T h e  deta i ls  of  this  re la t ion  are  dea l t  w i t h  in  a n o t h e r  paper .  

I n t r o d u c t i o n  

I n  a n  ea r l i e r  c o n t r i b u t i o n  ( B u e r g e r ,  1946) i t  w a s  
p o i n t e d  o u t  t h a t  t h e  H a r k e r  f u n c t i o n  ( H a r k e r ;  1936) 
c a n  b e  g e n e r a l i z e d  so t h a t  i t  c a n  b e  a p p l i e d  t o  a n y  l eve l  
o f  t h e  P a t t e r s o n  f u n c t i o n  ( P a t t e r s o n ,  1934 ,1935)  w h i c h  
r e p r e s e n t s  a t r a n s l a t i o n  c o m p o n e n t  o f  a g e n e r a l  s c r e w  
axis .  I f  t h e  s c r e w  is a s s u m e d  p a r a l l e l  t o  [001],  t h e  
g e n e r a l i z e d  H a r k e r  f u n c t i o n  h a s  t h e  f o r m  

P(xuzl) = cos 2.(h  + ku) 
h=-ook=-~ 

-Ciks in27r(hx+ky ), (1) 

w h e r e  Chk= ~ ] Fhk t 12 cos 2rtlz 1, (2) 

oO 

O'hk= Z I Fhkt ]2sin27r/zl, (3) 

z 1 is t h e  l eve l  o f  t h e  s e c t i o n  i n  P a t t e r s o n  space ,  a n d  is 
e q u a l  t o  0, ½, ~, 1 ~, o r  ~. 

B e c a u s e  o f  t h e  a n t i s y m m e t r i c a l  p r o p e r t y  o f  t h e  s ine ,  
C '  v a n i s h e s  w h e n e v e r  t h e  s y m m e t r y  p r o v i d e s  t h a t  
I Fh~: [9= I F ~  ] 2. T h e  c o n d i t i o n  fo r  t h i s  is t h a t  t h e  
c r y s t a l  h a v e  a p l a n e  o f  s y m m e t r y  (001) in  P a t t e r s o n  
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space. Since Patterson space is centrosymmetrical, 
this situation obtains whenever the c axis has even- 
fold symmetry  (by virtue of the relation C9. Cs = Ch). 
The only crystallographic case of odd-fold symmetry 
is for n = 3 (where n is the ' fold '  of the axis). For this 
reason (3) vanishes except in the case of the screw, 3 i. 
Taking this into account, the expansions of the genera- 
lized Harker coefficients C and C' are given in 
Table 1. 

Table 1. CoeJflcients of the generalized Harker function 

Level in 
Patterson 

space 

0 

½ 

¼ 

Symbol Expansion 
Co = ZIFh~tI= 

l 

C½ = Z I Fh,,tl ~- E [F~,,tl' 
I = 2 N  1 = ~ + 1  

ct = Z I F ~ , I 2 - ½  Z IF~etl '  
/=3N l----3.~-I- 1 

Vg 12_ c~ = -2-( Z I ~ t  Z I Fh~,i2)=0 
I=3~-I-I I=3N--I 

l=4.W =42~+2 

% = Z I F h , . l ' + ½  Z I F , , , . I '  
I = 6 N  l~-6A'=t=l 

-½ Z I F ~ , I  2 - Z I F~,, . I  ~ 

N is an integer. 
All summation limits: l = - 0o to co. 

I t  was also shown (Buerger, 1946) tha t  the general- 
ized Harker synthesis could be transformed inf.~ 
another synthesis known as the implication, which has 
properties which are useful in investigating crystal 
structures. The peaks of the implication correspond to 
(a) locations of the atoms in the crystal; (b) alternate 
locations of the atoms consistent with the data, and 
known as ambiguities, which are brought about by 
translation symmetry  as well as possible lack of a 
center of inversion; and (c) false locations, known as 
satellites, which are due to other operations of the 
space group, each such satellitie peak being geometri- 
cally related to (a) and (b).. 

of n are shown in Table 2. With the aid of these trans- 
formations, the implication function can be computed 
directly in terms of crystal indices, and plotted directly 
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Fig. 1. Lattice transformation giving transformation of 
generalized Harker synthesis int~ implication synthesis. 
Crystal cell, full lines; implication cell, broken lines. 

Alternative forms of  implication synthesis 

Perhaps the simplest way of devising an implication 
synthesis is to prepare the corresponding Harker 
synthesis and then transform it by a polar co-ordinate 
transformation. This requires shrinking the scale of the 
Harker plot by a factor 1/2 sin (~/n) and then rotating 
it  through an angle ½(It-a),  where n is the ' fold '  of the 
axis and a = 21r/n. 

The polar co-ordinate transformation involved in 
transforming a generalized Harker synthesis into an 
implication synthesis can also be provided by an 
appropriate lattice transformation, shown on the left 
of Fig. 1. The transformation can be defined by 
expressing the crystal axes in terms of the implication 
axes. The specffic transformations for the various values 

Table 2. Crystal elements expressed in terms of 
implication elements 

n Axial transformation Index transformation 
a' = 2a h'---- 2h 

2 |b'=2b k'=2k 
~a'=a-b h'=h--k 

3 (b'=a+2b k'=h+2k 
~a'=a--b h'=h--k 

4 (b'=a+b k '=h+k 
Ja'=a h'=h 

6 (b '=b  k ' = k  

in co-ordinates referred to the crystal axes. The im- 
plication function, In, then has the following form, the 
values of h' and k' being provided by  Table 2 for the 
appropriate value of n for the symmetry  (the strategy 
of the selection of n when the symmetry  permits 
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a choice is discussed in the earlier paper (Buerger, 
1946)): 

co c o  

In(xYzl) = Z Z Qh'k' cos 21r(h' x + k' y), (5) 
h ' = - -  co k ' = -  co 

where Qh'v = ~ I Fa'v* ]~ cos 21rlz 1. (6) 
l - - - - - -oo  

The expansion of Q is given in Table 3. 

Table 3. Coejficient.s of the implication function 
Level  in 

P a t t e r s o n  
space 

0 

S y m b o l  Expans ion  

Qo = Z [ F a ,  v ~ r  
l 

½ Q½ = Z I Fh,~,~l ~ -  Z l Fh'k',]~ 
/ = 2 N  t----23r+l 

I = 3 N  l = 3 N  4-1 

/ ~ 4 N  / = 4 N + 2  

I.-~6N I = 6 N  4- I 

-½ x IF~.wl ~- Z IF~.~.,l" 
t-----6N+ 2 1=6~V+3 

N is an integer.  
All s u m m a t i o n  limits l = -- oo to oo. 
h' and  k' p rov ided  b y  Table  2. 

Ambiguities from a group-theory viewpoint 
In the earlier contribution, the properties of the impli- 
cation function were developed almost entirely from 
a point of view of group theory. Expressed in this 
form, the nature of the ambiguity factor involved has 
the following significance, and its magnitude can be 
found in the following way. 

For space groups which can be developed from 
generating operations consisting of the operations of 
a symmetry  axis plus perpendicular translations only, 
M - 1  other similar (but, in general; no t  necessarily 
equivalent) sets of axes arise in the group as group 
products of the rotations and translations. M has the 
following values: 

n 2 3 4 6 
M 4 3 2 1 

Unless other operations are present in the group, 
there are M sets of non-equivalent axes. In more 
complicated space groups, however, other group opera- 
tions may require certain sets of these M axes to 
become equivalent. I f  this occurs in such a way that  

the axes of the set project on a perpendicular plane as 
if they were translation-equivalent, then clusters of 
atoms about one axis appear, in projection, to be 
translation-equivalent to the clusters about the other 
axes. Of course, in such cases, the duplication of atoms 
by the implication ceases to be an ambiguity, and the 
ambiguity factor is reduced by a factor I/q, where q 
is the number of axes of the set tha t  are equivalent 
by translation in projection. Now, only two kinds of 
operations can bring axes into such projected trans- 
lation-equivalence, namely, (1) a pure translation 
which is a submultiple of a cell translation (i.e. a 
'centering'  translation of a non-primitive cell); and 
(2) a glide component of a glide plane perpendicular 
to the axes. 

As a consequence of these considerations, the net 
ambiguity of an implication may be a submultiple 
of M. Indeed, if the M axes are collected together in 
sets of q axes, the net ambiguity of the implication 
is m=M/q .  Here q is the number of axes made 
actually equivalent by a 'centering'  translation, or 
equivalent in projection by a perpendicular glide. 

Examples of these cases are shown in Table 4. 

Ambiguities from a Fourier point of view 

The mat ter  of ambiguities can be looked at  from a 
different point of view which is, of course, equivalent 
to the group theoretical approach, but  which has 
certain practical advantages over it. When a Harker 
function is computed, FZ's corresponding to all avail- 
able hk combinations are utilized. The Harker function 
consequently gives complete information about inter- 
atomic vectors between atoms related by the symmetry  
operation corresponding to the Patterson level in 
question. 

When, however, the Harker function is used in 
transformed form as an implication, the situation is 
different. In  this application, it is used in connection 
with a crystal cell which has M'  times the area of the 
implication cell (see the left side of Fig. 1 and also 
Buerger (1946, Fig. 5)). Therefore, the same impli- 
cation cell is required to cover by repetition M'  equal 
parts of the crystal cell area, which are not necessarily 
equivalent. 

I t  is now easy to show tha t  the crystal cell requires 
M'  times as many Fourier coefficients to define its 

Table 4. Ambiguity of implications 

N e t  F rac t ion  
a m b i g u i t y  of  hk0 

fac tor  spec t ra  
m = M/q Absen t  spec t ra  absen t  

4 None  0 
2 hkl when  h + k = 2n + 1 ½ 
3 None  0 
1 hkl when  h - - k + l = 3 n + .  1 
2 None  0 
1 hkl when  h + k + l = 2 n +  1 ½ 
4 0k0 when  k = 2n + 1 
2 hOl when h + l = 2n + 1 

Basic  
a m b i g u i t y  Degeneracy  

Space fac tor  coefficient 
groups  M q 

P 2  4 1 
C2  4 2 
C3 3 1 
R 3  3 3 
P 4  2 1 
1 4  2 2 
P21 4 1 
P 2~/n 4 2 

A C I  

Frac t ion  Frac t ion  
of  hk0 of  hO1 

spec t ra  spec t ra  
p resen t  p resen t  

,/q 1/q 
1 
½ 
1 
½ 
1 
½ 

• 1 

• ½ 

I7 
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structure as can be provided by transformation from 
the  coefficients of the implication. Each Fourier 
coefficient is represented by a point of the reciprocal 
lattice. The reciprocal lattice of the crystal can be 
easily found. I t  is represented on the right of Fig. 1 
by dots. The reciprocal lattice of the implication cell 
can also be found. For example, it can be determined 
by inspection from the geometrical relation between 
implication cell and crystal cell shown on the left of 
Fig. 1. Alternatively, it can be found in relation to the 
reciprocallattice of the crystal by systematically taking 
all implication indices and transforming them into 
crystal indices with the aid of Table 2. By either 
method, the reciprocal lattice shown by rings on the 
right of Fig. 1 results. I t  is evident that  the ringed 
points, in general, correspond to only a fraction of the 
total number of points. This fraction, f, is the" ratio of 
the two reciprocal cell areas. Now let 

A ~ - t h e  area of the crystal reciprocal cell, 
A~ = the  area of the implication reciprocal cell, 
A~ = the area of the crystal cell, 
At = the  area of the implication cell. 

Then * * I = A , / A o = A d A ~ = M ' ,  (7) 

where M'  is the modulus of the transformation from 
implication to crystal cell. 

Conversely, ff only a fraction, f,  of the Fourier 
Coefficients of the crystal are used for an electron- 
density projection, a cell 1/M'th of the t r ue  area 
appears, or, every atom appears in the corresponding 
location in the M' subcells of the true crystal cell. Thus 
M'  is identical with the ambiguity factor M. Con- 
sequently, ff only a (systematically distributed) 
fraction, f, of the Fourier coefficients of a crystal is 
used in forming its electron-density function, the 
function locates the atoms with an ambiguity M, i.e. 
the crystal structure and M - 1  ghosts appear as the 
synthesis. 

The discussion so far assumes that the crystal does 
not have, in projection, submultiple translations, as 
mentioned in the last section. I f  it does, every such 
operation produces missing spectra. I f  the translation 
is 1/qth of the true cell edge, then 1/qth of the hkO 
spectra remain and are not extinguished. When the 
remaining fraction of the spectra is normally missing, 
then this missing set in the implication ceases to 
correspond to an ambiguity. The net ambiguity, m, is 
then M/q. 

The determination of ambiguity from extinctions 
can be summarized as follows: for a particular n of the 
symmetry axis there is a basic ambiguity, M. The net 
ambiguity, m, is found by taking the product M. I/q, 
where 1/q is the fraction of the spectra remaining in 
the reciprocal-lattice plane parallel to the implication, 
and not extinguished. Table 4 shows examples of the 
determination of ambiguity by missing spectra in com- 
parison with the group method. 

In  concluding this section, the practical utility of 
the extinction method of determining ambiguity should 
be stressed. The determination of ambiguities by group 
theoretical methods requires a knowledge of group 
theory, and is somewhat tedious. However, the 
ambiguity factor for any space group projected normal 
to any axis can be very easily determined by the 
simple expedient of looking up the extinctions in the 
zone of the desired axis. The fraction of the spectra not 
extinguished is then 1/q. Study of the examples in 
Table 4 will make the method clear. 

Solution of implication ambiguities 

Ambiguities in the locations of specific pairs of atoms 
can be removed with the  aid of linear Patterson 
syntheses, provided only that  the atoms show up as 
peaks on the implication. The theoretical basis for this 
removal of ambiguity is illustrated in Fig. 2. Suppose 

© © 
o t  (~s, j..._.__~t o 

(3 © 
O ~ ®8, % ~ 0  0 

© © 
Fig. 2. Theoretical basis for the removal of ambiguities in the 

loca~ion of pairs of atoms with the aid of linear Pattomon 
s3mthesos. 

the implication indicates that  atom A has one of the 
m locations xlyl, x2y~,..., x,~y~, while atom B has one 
of the m locations X 1 YI, X~ Y~,..., X~ Ym. Now, the 
ambiguity factor has no meaning with regard to any 
one equivalent set of atoms, but only with regard to 
combinations of equivalent sets of atoms (Buerger, 
1946, p. 582, Fig. 4). The total number of combinations 
is m, and thus m represents the ambiguity of a pair of 
atoms. For this reason, the origin may be arbitrarily 
chosen in the neighbourhood of a particular set of A 
atoms, say in the neighbourhood of the set represented 
by the coordinates xlyr  The representative A atom 
is now at xly lzr  Possible B atoms exist at X 1 Y1Z~, 
X 2 Y~Z~,..., Xm Y,nZm. Atom B is at only one of these 
m locations. Consequently if the ni Patterson line syn- 
theses, P ( X I - x l ,  Y I - Y l ,  z), P (X~-x l ,  Y~-Yl ,  z), ..., 
P(Xm-x~,  Y,~-Yl,  z), are computed, a peak of height 
P~B = (P~PB)Av must appear on one of them (Buerger, 
1946, p. 595). The value of X Y for wMch this peak 
occurs is the correct set of coordinates for B. This pro- 
cedure removes the ambiguity for tMs particular com- 
bination of A B  atoms. 

This resolution of the ambiguity fails ff any two x 
and y differences are the same, for example, ff 

( X v -  x~, Y ~ -  yx) = ( X , -  x~, Y , -  Yl). 
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Such fortuitous circumstances correspond with a 
Patterson cyclotomie ambiguity (Patterson, 1944), and 
cannot be resolved. 

With the exception of Patterson cyclotomic ambi- 
guities, the possibility of resolving implication ambi- 
guities implies in principle that  the three-dimensional 
Patterson function contains (and can be untangled to 
provide) a complete solution of the projection of the 
cry.s~al structure for any case involving symmetry 
other than 1-fold symmetry. 

(An alternative, but less elegant, way of solving the 
implication ambiguity is to compute the two-dimen- 
sional Patterson function 

P(xy)= ~ ~ [Fake 9cos21r(hx+ky). (8) 
h = - o o k = - ~  

Unlike the Harker or implication synthesis, this 
synthesis contains peaks due to unsymmetrical inter- 
actions. Among these there is a peak due to inter- 
action AB. Thus, ff A of the implication, Fig. 2, is set 
at the origin of P(xy), the latter contains a peak at 
one of the four positions B1, B~, Ba, or B a. The value 
of XY for which the peak (of appropriate height) is 
found is the correct set of co-ordinates for B.) 

A n  invitat ion to phase  determinat ion  

In cases uncomplicated by satellites and ambiguities 
(for example, for space group C61), the implication 
function and the Fourier function representing the 
electron density projected on a plane normal to the 
symmetry axis have peaks at the same places. They 
differ only in the exaggeration of the peaks. Further- 

more, these Fourier functions have the same form. The 
general electron density function is 

oo oo 

p(xy)= ~ ~ A~kocos2~(hx+ky) 
h = - - ~ k = - - o o  

+ Bhko sin 21r(hx + ky), 
while the implication general function is 

cO 

In(XyZl) = ~ ~ Qa,~, cos 2u(h' x + k' y). 
h ' = -  ~ k ' = -  oo 

I t  is, therefore, obvious (and indeed has been obvious 
since the discovery of the implication function) that  
the Fourier coefficients of the implication function 
must bear a simple relation to those of the electron- 
density projection function. In favorable cases this 
relation should be capable of giving information about 
the phases of the F 's  of the electron-density function. 
I t  therefore offers a possible alternative approach to 
the problem of phase determination which has been 
provided by the Harker-Kasper (1947) inequalities. The 
relations between F ' s  and F~"s suggested by impli- 
cation theory is discussed in another paper (Buerger, 
1948). The ambiguities discussed in this paper pervade 
all such phase determination. 
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The compounds Bas(P04) 2 and S r s ( P 0 4 )  2 a r e  rhombohedral and isostructural. The unit cell contains 
one molecule. The dimensions of the unit rhombohedron and the calculated densities are: 

a ~ p 

Baa(PO4) z 7.696 + 0.002 kX. 42 ° 35' _+ 2' 5.25 g.cm: s 
Srs(PO4) 2 7.280 + 0.002 kX. 43 ° 21' +_ 2' 4.53 g.cm: s 

The space group is R~m and the atomic positions are: 1 Ba in (0, 0, 0), 2 Ba in +_ (u 1, u 1, Ul), 
2 P in _+ (u2, u~,.u~), 2 0  in _+ (u s, ua, us), 6 0  in + (x, x, z) (x, z, x) (z, x, x); with parameter values 
u 1 = 0.208, u 2 = 0-412, u a = 0.337, x = 0-285 and z = 0.742. 

Introduct ion  

The phosphates, the crystal structures of which are 
discussed in this paper, were prepared by Mr H. B. 
Evans by slow precipitation. The X-ray diffraction 
patterns showed that  many of the precipitates con- 
tained other phases, such as BaI-IP04, SrHP04 or 
Srs(0H)(P04)a. 

Two samples of barium phosphate, which according 
to the X-ray patterns contained only one phase, were 
chemically analyzed by Mr Evans with the following 
results: 

Theoretical for 
I II Bas(PO4) z 

% Ba 68.2 67.0 68.4 
% P 10.0 11.0 10.3 

x7-2 


